S Anbazhagan and N Kumarappan: Binary Classification of Day-ahead Deregulated Electricity Market Prices Using Neural Network Input Featured by Dct

نویسندگان

  • S. Anbazhagan
  • N. Kumarappan
چکیده

There is a general consensus that the movement of electricity price is crucial for electricity market. The binary electricity price classification method is as an alternative to numerical electricity price forecasting due to high forecasting errors in various approaches. This paper proposes a binary classification of day-ahead electricity prices that could be realized using discrete cosine transforms (DCT) based neural network (NN) approach (DCT-NN). These electricity price classifications are important because all market participants do not to know the exact value of future prices in their decision-making process. In this paper, classifications of electricity market prices with respect to pre-specified electricity price threshold are used. In this proposed approach, all time series (historical price series) are transformed from time domain to frequency domain using DCT. These discriminative spectral co-efficient forms the set of input features and are classified using NN. The binary classification NN and the proposed DCT-NN were developed and compared to check the performance. The simulation results show that the proposed method provides a better and efficient method for day-ahead deregulated electricity market of mainland Spain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Market Clearing Price Forecasting in Deregulated Electricity Markets Using Adaptively Trained Neural Networks

The market clearing prices in deregulated electricity markets are volatile. Good market clearing price forecasting will help producers and consumers to prepare their corresponding bidding strategies so as to maximize their profits. Market clearing price prediction is a difficult task since bidding strategies used by market participants are complicated and various uncertainties interact in an in...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

A New Iterative Neural Based Method to Spot Price Forecasting

Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...

متن کامل

Introduce an Optimal Pricing Strategy Using the Parameter of "Contingency Analysis" Neplan Software in the Power MarketCase Study (Azerbaijan Electricity Network)

Overall price optimization strategy in the deregulated electricity market is one of the most important challenges for the participants, In this paper, we used Contingency Analysis Module of NEPLAN Software, a strategy of pricing to market participants is depicted.Each of power plants according to their size and share of the Contingency Analysis should be considered in the price of its hour. In ...

متن کامل

Portfolio Decision of Short-Term Electricity Forecasted Prices through Stochastic Programming

Deregulated electricity markets encourage firms to compete, making the development of renewable energy easier. An ordinary parameter of electricity markets is the electricity market price, mainly the day-ahead electricity market price. This paper describes a new approach to forecast day-ahead electricity market prices, whose methodology is divided into two parts as: (i) forecasting of the elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012